首页> 外文OA文献 >Quantifying diffuse and discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field
【2h】

Quantifying diffuse and discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field

机译:量化Lucky Strike热液场中Tour Eiffel排气点的扩散和离散排气

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The relative heat carried by diffuse versus discrete venting of hydrothermal fluids at mid-ocean ridges is poorly constrained and likely varies among vent sites. Estimates of the proportion of heat carried by diffuse flow range from 0% to 100% of the total axial heat flux. Here, we present an approach that integrates imagery, video, and temperature measurements to accurately estimate this partitioning at a single vent site, Tour Eiffel in the Lucky Strike hydrothermal field along the Mid-Atlantic Ridge. Fluid temperatures, photographic mosaics of the vent site, and video sequences of fluid flow were acquired during the Bathyluck’09 cruise (Fall, 2009) and the Momarsat’10 cruise (Summer, 2010) to the Lucky Strike hydrothermal field by the ROV Victor6000 aboard the French research vessel the ‘Pourquoi Pas’? (IFREMER, France). We use two optical methods to calculate the velocities of imaged hydrothermal fluids: (1) for diffuse venting, Diffuse Flow Velocimetry tracks the displacement of refractive index anomalies through time, and (2) for discrete jets, Particle Image Velocimetry tracks eddies by crosscorrelation of pixel intensities between subsequent images. To circumvent video blurring associated with rapid velocities at vent orifices, exit velocities at discrete vents are calculated from the best fit of the observed velocity field to a model of a steady state turbulent plume where we vary the model vent radius and fluid exit velocity. Our results yield vertical velocities of diffuse effluent between 0.9 cm s-1 and 11.1 cm s-1 for fluid temperatures between 3°C and 33.5°C above that of ambient seawater, and exit velocities of discrete jets between 22 cm s-1 and 119 cm s-1 for fluid temperatures between 200°C and 301°C above ambient seawater. Using the calculated fluid velocities, temperature measurements, and photo mosaics of the actively venting areas, we calculate a heat flux due to diffuse venting from thin fractures of 3.15 ±2.22 MW, discrete venting of 1.07± 0.66 MW, and, by incorporating previous estimates of diffuse heat flux density from Tour Eiffel, diffuse flux from the main sulfide mound of ~15.6 MW. We estimate that the total integrated heat flux from the Tour Eiffel site is 19.82 ± 2.88MWand that the ratio of diffuse to discrete heat flux is ~18. We discuss the implication of these results for the characterization of different vent sites within Lucky Strike and in the context of a compilation of all available measurements of the ratio of diffuse to discrete heat flux
机译:在大洋中脊,由热流体的分散排放和离散排放所带来的相对热量受到的约束较弱,并且在各个排放点之间可能有所不同。扩散流携带的热量比例估计为总轴向热通量的0%至100%。在这里,我们提出了一种整合图像,视频和温度测量值的方法,以准确估算单个排放点沿中大西洋海脊Lucky Strike热液场中的Tour Eiffel的划分。 ROV Victor6000在Bathyluck'09巡洋舰(2009年秋季)和Momarsat'10巡洋舰(2010年夏季)至Lucky Strike热液场期间获取了流体温度,喷口处的图像镶嵌以及流体流动的视频序列。在法国研究船“ Pourquoi Pas”上吗? (法国,IFREMER)。我们使用两种光学方法来计算成像的热液的速度:(1)用于扩散排放,扩散流速度法跟踪折射率异常随时间的位移,以及(2)对于离散射流,粒子图像速度法通过涡流的互相关来跟踪涡流。后续图像之间的像素强度。为了避免与排气孔处的快速速度相关的视频模糊,根据观察到的速度场与稳态湍流羽流模型的最佳拟合,计算离散排气孔处的出口速度,在该模型中,我们会更改模型排气孔半径和流体出口速度。我们的结果表明,当流体温度高于周围海水温度3°C至33.5°C时,扩散流出物的垂直速度在0.9 cm s-1和11.1 cm s-1之间,而离散射流的出口速度在22 cm s-1和11cm之间。 119 cm s-1,用于流体温度高于环境海水200°C至301°C之间。使用计算出的流体速度,温度测量值和主动通风区域的照片镶嵌图,我们计算出3.15±2.22 MW细裂缝,1.07±0.66 MW离散通风的弥散排放引起的热通量,并结合先前的估计图来自埃菲尔铁塔的弥散热通量密度,来自主要硫化物丘的弥散热通量约为15.6 MW。我们估计来自埃菲尔铁塔站点的总综合热通量为19.82±2.88MW,扩散与离散热通量之比为〜18。我们讨论了这些结果对幸运罢工中不同排气孔的特征的影响,并讨论了所有可用的扩散与离散热通量比的测量结果的汇编

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号